87 research outputs found

    Cellular Blood Flow

    Full text link
    The fluid dynamics video that is presented here outlines recent advances in the simulation of multiphase cellular blood flow through the direct numerical simulations of deformable red blood cells (RBCs) demonstrated through several numerical experiments. Videos show particle deformation, shear stress on the particle surface, and the formation of particle clusters in both Hagen-Poiseuille and shear flow.Comment: 2 pages, one hyperlink to 2 video

    The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner

    Get PDF
    Isolation of metastatic circulating tumor cells (CTCs) from cancer patients is of high value for disease monitoring and molecular characterization. Despite the development of many new CTC isolation platforms in the last decade, their isolation and detection has remained a challenge due to the lack of specific and sensitive markers. In this feasibility study, we present a method for CTC isolation based on the specific binding of the malaria rVAR2 protein to oncofetal chondroitin sulfate (ofCS). We show that rVAR2 efficiently captures CTCs from hepatic, lung, pancreatic, and prostate carcinoma patients with minimal contamination of peripheral blood mononuclear cells. Expression of ofCS is present on epithelial and mesenchymal cancer cells and is equally preserved during epithelial-mesenchymal transition of cancer cells. In 25 stage I-IV prostate cancer patient samples, CTC enumeration significantly correlates with disease stage. Lastly, rVAR2 targets a larger and more diverse population of CTCs compared to anti-EpCAM strategies

    Distance decay 2.0-A global synthesis of taxonomic and functional turnover in ecological communities

    Get PDF
    Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments
    corecore